Michael Murphy

Professor; Department Head

Michael Murphy

I am interested in how bacteria respond to stresses such as iron limitation, antibiotics, and barriers to motility. The systems used by bacteria to overcome these stresses are required for growth during infection and are potential targets for therapy. We investigate the function of proteins involved in stress response through a combination of structure determination, genetic phenotypes, and biochemical assays.

(a) Iron and oxidative stress

Within the cell, the labile iron pool is believed to not bound to proteins as cofactors but chelated in the ferrous form by metabolites. This iron may be oxidized by ferritin and stored as a ferric-oxide within the ferritin nanocage. Iron movement from the labile pool to ferritin is hypothesized to be in response to oxidative stress. Our aim is to show the conditions under which ferroxidation by ferritin is important for cell survival.

(b) Helical cell shape of epsilon-proteobacteria

The pathogens Campylobacter jejuni and Helicobacter pylori have helical cell shape used to burrow into mucosal layers of gastrointestinal track. Bacterial cell shape is defined by the structure of the peptidoglycan layer and helical bacteria have enzymes that modify this layer and are required for helical morphology. We are investigating the structure and function of these cell shape determining enzymes. This project is a collaboration with Dr. Tanner (Chemistry) and Dr. Salma (FHCRC, Seattle).

(c) Antibiotic resistance by Burkholderia

Burkholderia cenocepacia complex is a group of bacteria that infect the lungs of cystic fibrosis patients. These bacteria are notoriously resistant to clinically available antibiotics. We are investigating two mechanisms responsible to broad antibiotic resistance by these bacteria. The first is the secretion of bacterial lipocalins which potentially bind antibiotics and the second is modification of lipid A. We are working in collaboration with Dr. Valvano at Queen’s University Belfast.

(d) Staphylococcal response to iron limitation

The bacterial pathogen Staphylococcus aureus uses iron for metabolism and to counter oxidative stress. During invasive infection, iron is acquired by S. aureus from host sources including heme from hemoglobin. Also, the pathogen adapts to iron limiting growth conditions by repressing iron-requiring pathways such as the TCA cycle and oxidative phosphorylation. We are investigating siderophore and heme-iron based uptake systems used by S. aureus to acquire iron from the human host environment. For example, IsdB is expressed on the bacterial cell surface and binds hemoglobin and extracts heme for use by S. aureus. Staphyloferrin B is a siderophore produced by S. aureus by the enzymes expressed from the sbn locus. We interested in understanding how staphyloferrin B is produced when S. aureus metabolism is operating under iron limitation. We are collaborating with Dr. Heinrichs (U. Western Ontario).

View Publications


  • Antimicrobial Discovery and Resistance
  • Microbial Physiology and Pathogenesis

Michael Murphy

Professor; Department Head

Department of Microbiology and Immunology

michael.murphy@ubc.ca

Office Tel: 604-822-8022

Office Location: 1.372 - 2350 Health Sciences Mall, Life Sciences Centre

Lab Tel: 604-822-0254

Lab Location: 4520 - 2350 Health Sciences Mall, Life Sciences Centre

Musqueam First Nation land acknowledegement

We honour xwməθkwəy̓ əm (Musqueam) on whose ancestral, unceded territory UBC Vancouver is situated. UBC Science is committed to building meaningful relationships with Indigenous peoples so we can advance Reconciliation and ensure traditional ways of knowing enrich our teaching and research.

Learn more: Musqueam First Nation

Microbiology and Immunology

1365–2350 Health Sciences Mall
Vancouver, BC Canada
V6T 1Z3

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. Bluesky The logo for the Bluesky social media service. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Spotify The logo for the Spotify music streaming service. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.