Sean Crowe

Professor

Sean Crowe

The overarching goal of my research is to improve our capacity to predict and respond to global change by creating new knowledge of the earth system. Microorganisms and prokaryotes in particular have been the engines of biogeochemical cycles throughout Earth's history. Eukaryotes rose to prominence with the evolution of land plants some 400 million years ago, and now humans are playing key roles in shaping fluxes of matter and energy at a global scale. Going forward, our survival as a species will be linked to our capacity to predict and manage our own interaction with the earth system. Qualitative and quantitative models that can describe biogeochemical cycles, reproduce past events, and predict future change are tools needed for managing human interaction with the earth. The information, or the 'blueprint', on how to run biogeochemical cycles is coded in the microbial DNA that is dispersed throughout the world's oceans, soils, and the deep biosphere. How this information translates into networked, microbially-catalyzed geochemical reactions remains largely uncertain. The utility and performance, therefore, of current models of biogeochemical cycling are challenged by a lack of explicit definitions of the biological information carriers (eg. DNA, RNA, protein) that ultimately regulate and control biogeochemical cycles and their dynamics through time.

New gene-centric modeling approaches are beginning to incorporate genetic information into biogeochemical models, but even these models suffer from a lack of relevant ecophysiological knowledge with which to qualify and quantify the link between relevant processes and biological information carriers. My current research program focuses heavily on creating this knowledge using process rate measurements to acquire ecophysiological data in conjunction with molecular microbial studies that together can link the presence, abundance, and organization of specific biological molecules (DNA, RNA, protein) directly to rates of geochemical transformations. Such models help to reconstruct biogeochemical cycling in the past as constrained through the application of paleoproxies to the geologic record. This 'ground truthing', through application to past environments, gives confidence in predictions for future scenarios.

Current research in my group focuses in particular on the biogeochemical cycling of nitrogen, iron, sulfur, phosphorus, and carbon in modern and past environments. We are working to fill gaps in our knowledge of these cycles by constraining the ecophysiology of anaerobic iron and sulfur oxidizing microorganisms, which are linked to the nitrogen cycle through their role in nitrate reduction. Likewise, we are working to delineate the role of dissimilatory nitrate reduction to ammonium as a 'short-circuit' that retains fixed nitrogen in anaerobic ecosystems and facilitates nitrogen recycling. Phosphorus is another nutrient of current interest and we are studying both phosphorus availability in lateritic soils and the flexibility of biology in its phosphorus requirements for growth. We are also working on enhancing the use of redox sensitive trace metals and their isotopes as paleoproxies, linking sedimentary signals to contemporary biogeochemical cycling. A diversity of other projects are ongoing in the group ranging from engineered solutions to contaminant management, microbial biomineralization, bacterial colonization of implant and prosthetic surfaces, microbiology of the deep subsurface, microbial roles in unconventional energy resources, and quaternary climate in the Indo-Pacific region.  

View Publications


  • Antimicrobial Discovery and Resistance
  • Microbial Communities
  • Microbial Factories
  • Microbial Physiology and Pathogenesis

Sean Crowe

Professor

Department of Microbiology and Immunology
Department of Earth, Ocean, and Atmospheric Sciences

sean.crowe@ubc.ca

Office Tel: 604-827-3827

Office Location: 2455 - 2350 Health Sciences Mall, Life Sciences Centre

Lab Tel: 604-827-3897

Lab Location: 2440 - 2350 Health Sciences Mall, Life Sciences Centre

Musqueam First Nation land acknowledegement

We honour xwməθkwəy̓ əm (Musqueam) on whose ancestral, unceded territory UBC Vancouver is situated. UBC Science is committed to building meaningful relationships with Indigenous peoples so we can advance Reconciliation and ensure traditional ways of knowing enrich our teaching and research.

Learn more: Musqueam First Nation

Microbiology and Immunology

1365–2350 Health Sciences Mall
Vancouver, BC Canada
V6T 1Z3

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. Bluesky The logo for the Bluesky social media service. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Spotify The logo for the Spotify music streaming service. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.