Thea Whitman

Assistant Professor

Thea Whitman

Pyrophilous (fire-loving) microbes

The frequency of large, high severity wild fires is increasing in the western US and in regions around the world due to long-term fire suppression strategies and climate change. These fires have direct, negative effects on soil carbon stocks through combustion, but they have indirect and potentially positive effects on soil carbon stocks through the production of pyrogenic organic matter (PyOM) that has a long residence time and constitutes a major pool of C in fire-prone ecosystems. Soil microbes are likely to be involved with the degradation of all of these compounds, yet little is currently known about the organisms or metabolic processes involved. We are dissecting the effects of microbes on post-fire soil carbon dynamics by using a systems biology approach that couples small experimental “pyrocosms”, highly controlled production of 13C-labeled pyrolyzed substrates, genomics, transcriptomics, stable isotope techniques, and mass spectrometry.

Fire effects on soil microbial communities

Boreal forest soils are among the richest stocks of terrestrial carbon (C) in the world, primarily as a result of their low temperatures and slow decomposition rates. The fate of these large C stocks in the face of climate change is an area of critical concern, particularly when considered in the context of predictions of increasing wildfire. Although soil microbes are the core drivers of the soil organic C cycle, the effects of wildfire on boreal soil microbial communities remain poorly characterized.

The 2014 fires in the Northwest Territories were exceptional: they were the largest recorded burn in a single fire season, with some fires burning unusually intensely, leaving essentially no living vegetation, and others resulting in “fire refugia” of unburned or only lightly burned areas. We are collaborating with researchers from the Canadian Forest Service and the University of Alberta, who, in addition to linking remote-sensing data to a comprehensive on-the-ground site characterization and measurements of burn severity, will also collect an unprecedented set of soil samples from these fires. Characterizing the microbiome of these soils will offer us a profound level of insight into the effects of fire on soil microbial communities, and leverage an extensive field campaign to bridge the scale from satellites to microbes.

Microbial ecology of microhabitats

Despite the billions of microbial cells found in a gram of soil, soil microbes are estimated to inhabit only 1% of total soil volume, and are unevenly distributed, forming colonies and biofilms. Thus, the biogeochemical processes driven by these microbes are often limited to relatively small volumes of soil, or “hotspots”. The different soil conditions that develop in each microhabitat support different microbial communities – e.g., rhizosphere vs. bulk soil; microaggregate interiors vs. whole aggregates; micropores vs. macropores; detritosphere (decomposing organic matter) vs. bulk soil. However, the genetic and ecological mechanisms driving these differences in microbial community composition across different microhabitats are not well understood, nor are their implications for soil microbial diversity and functioning. In addition, the prevalence of each microhabitat changes over time and under different soil management strategies, so the relative importance of these mechanisms would also be expected to change over time. Understanding how soil microhabitats structure soil microbial communities will allow us to better predict how changes to the environment will affect the soil microbial community and its biogeochemical functioning.

View Publications


  • Microbial Communities
  • Microbial Factories

Thea Whitman

Assistant Professor

Department of Microbiology and Immunology

thea.whitman@ubc.ca

Office Location: 2558 - 2350 Health Sciences Mall, Life Sciences Centre

Musqueam First Nation land acknowledegement

We honour xwməθkwəy̓ əm (Musqueam) on whose ancestral, unceded territory UBC Vancouver is situated. UBC Science is committed to building meaningful relationships with Indigenous peoples so we can advance Reconciliation and ensure traditional ways of knowing enrich our teaching and research.

Learn more: Musqueam First Nation

Microbiology and Immunology

1365–2350 Health Sciences Mall
Vancouver, BC Canada
V6T 1Z3

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. Bluesky The logo for the Bluesky social media service. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Spotify The logo for the Spotify music streaming service. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.